Category Archives: education technology

The students’ perceptions on remote learning through video conferencing!

Photo by Chris Montgomery on Unsplash

This is an excerpt from a recent article that was published by Springer’s Technology, Knowledge and Learning Journal.

Source: Camilleri, M.A. & Camilleri, A.C. (2021). The Acceptance of Learning Management Systems and Video Conferencing Technologies: Lessons Learned from COVID-19. Technology, Knowledge & Learning.

The unexpected Coronavirus (COVID-19) pandemic has disrupted the provision of education in various contexts around the globe. Education service providers, including higher education institutions (HEIs) were required to follow their respective governments’ preventative social distancing measures and to increase their hygienic practices, to mitigate the spread of the pandemic. They articulated contingency plans, disseminated information about the virus, trained their employees to work remotely, and organised virtual sessions with students or course participants.

These latest developments have resulted in both challenges and opportunities to students and educators. Course instructors were expected to develop a new modus operandi to deliver their education services, in real time. During the first wave of COVID-19, HEIs were suddenly expected to shift from traditional and blended learning approaches to a fully virtual course delivery.

The shift to online, synchronous classes did not come naturally. COVID-19 has resulted in different problems for course instructors and their students. In many cases, educators were compelled to utilise online learning technologies to continue delivering their courses. In the main, educators have embraced the dynamics of remote learning technologies to continue delivering educational services to students, amid the peaks and troughs of COVID-19 cases.

Subsequently, policy makers have eased their restrictions when they noticed that there were lower contagion rates in their communities. After a few months of lockdown (or partial lock down) conditions, there were a number of HEIs that were allowed to open their doors. They instructed their visitors to wear masks, and to keep socially distant from each other. Most HEIs screened individuals for symptoms as they checked their temperatures and introduced strict hygienic practices like sanitisation facilities in different parts of their campuses.

However, after a year and a half, since the outbreak of COVID-19, some academic members of staff were still relying on the use of remote learning technologies to deliver education services, as they utilised learning management systems (LMS) and video conferencing software to teach their courses. During the pandemic, they became acquainted with online technologies that facilitated asynchronous as well as synchronous learning.

Whilst their asynchronous approaches included text and/or recorded video that were made available through LMS (like Moodle), in many cases, they also utilised video conferencing platforms including Microsoft Teams, Google Meet, Zoom, D2L, Webex, Adobe Connect, Skype for Business, Big Blue Button and EduMeet, among others, to interact with students in real time.

In this light, our research investigated the facilitating conditions that can foster the students’ acceptance and usage of remote learning technologies including LMS and video conferencing programs. We examined the participants’ motivations to use them to continue pursuing their educational programs from home, during COVID-19. Specifically, our study investigated students’ perceptions about the usefulness of remote learning, their interactive capabilities, their attitudes toward their utilisation, the facilitating conditions as well as their intentions to continue using them.

Our targeted respondents were registered students who followed full-time and part-time courses at the University of Malta in Malta. We used a structural equation modeling partial least squares (SEM-PLS) analytical approach to examine the responses of 501 students who voluntarily participated in our research.

The findings clearly indicated that the higher education students perceived the usefulness of remote learning technologies during COVID-19 and valued their interactive attributes. They confirmed that the respondents held positive perceptions toward their universities’ facilitating conditions (like ongoing support, as well as training and development opportunities).

The empirical results reported that the HEI’s facilitating conditions had a significant effect on the students’ interactive engagement with online learning resources and on their attitudes towards these technologies.

The confirmatory composite analysis reported that there were positive and highly significant effects that predicted the students’ intentions to continue using remote learning technologies. Evidently, educators have provided them with the necessary resources, knowledge and technical support to avail themselves of remote learning technologies.

The respondents indicated that they accessed their course instructors’ online resources and regularly interacted with them through live conferencing facilities. The findings from SEM-PLS confirmed that the perceived usefulness and perceived interactivity with online technologies had a positive effect on their attitudes toward remote learning.

In sum, this contribution has differentiated itself from other studies as it investigated the students’ perceptions and attitudes on the use of asynchronous as well as synchronous learning technologies in higher education. It implies that the integration of these technologies ought to be accelerated in the foreseeable future as they may become the norm, in a post COVID-19 era. Therefore, HEIs ought to continue investing in online learning infrastructures, resources and facilitating conditions, for the benefit of their students and faculty employees.

Leave a comment

Filed under Digital Learning Resources, digital media, Education, education technology, Marketing, mobile learning, Remote Learning

The acceptance of learning management systems and video conferencing technologies

The following texts are excerpts from one of my latest articles.

Suggested Citation: Camilleri, M.A. & Camilleri, A.C. (2021). The Acceptance of Learning Management Systems and Video Conferencing Technologies: Lessons Learned from COVID-19, Technology, Knowledge and Learning, https://doi.org/10.1007/s10758-021-09561-y

Introduction

An unexpected Coronavirus (COVID-19) pandemic has disrupted the provision of educational services in various contexts around the globe (Rahiem, 2020; Johnson, Veletsianos & Seaman, 2020; Bolumole, 2020). During the first wave of COVID-19, several educational institutions were suddenly expected to interrupt their face-to-face educational services. They had to adapt to an unprecedented situation. This latest development has resulted in both challenges and opportunities to students and educators (Howley, 2020; Araújo, de Lima, Cidade, Nobre, & Neto, 2020). Education service providers, including higher education institutions (HEIs) were required to follow their respective governments’ preventative social distancing measures and to increase their hygienic practices, to mitigate the spread of the pandemic. Several HEIs articulated contingency plans, disseminated information about the virus, trained their employees to work remotely, and organized virtual sessions with students or course participants.

Course instructors were expected to develop a new modus operandi to deliver their higher education services, in real time (Johnson et al., 2020). During the pandemic, many HEIs migrated from traditional and blended teaching approaches to fully virtual and remote course delivery. However, their shift to online, synchronous classes did not come naturally. COVID-19 has resulted in different problems to course instructors and to their students. In many cases, during the pandemic, educators were compelled to utilize online learning technologies to continue delivering their courses (Fitter, Raghunath, Cha, Sánchez, Takayama & Matarić, 2020). In the main, educators have embraced the dynamics of remote learning technologies to continue delivering educational services to students, amid peaks and troughs of COVID-19 cases.

Subsequently, policy makers have eased their restrictions when they noticed that there were lower contagion rates in their communities. After a few months of lockdown (or partial lock down) conditions, there were a number of HEIs that were allowed to open their doors. They instructed their visitors to wear masks, and to keep socially distant from each other. Most HEIs screened individuals for symptoms as they checked their temperatures and introduced strict hygienic practices like sanitization facilities in different parts of their campuses.  

However, after a year and a half, since the outbreak of COVID-19, some academic members of staff were still relying on the use of remote learning technologies like learning management systems (like Moode) and video conferencing software to teach their courses (Cesco, Zara, De Toni, Lugli, Betta, Evans & Orzes, 2021). During the pandemic, they became acquainted with online technologies that facilitated asynchronous learning through text and/or recorded video (Sablić, Mirosavljević & Škugor, 2020). Moreover, many of them, organized interactive sessions with their students in real time. Very often, they utilized video conferencing platforms including Microsoft Teams, Google Meet, Zoom, D2L, Webex, Adobe Connect, Skype for Business, Big Blue Button and EduMeet, among others. COVID-19 has triggered them to use these remote technologies to engage in two-way communications with their students.

Although in the past year, there were a number of researchers who have published discursive articles about the impacts of COVID-19 on higher education, for the time being, there are just a few empirical studies on the subject (Bergdahl & Nouri, 2020; Aguilera-Hermida, 2020; Gonzalez, de la Rubia, Hincz, Comas-Lopez, Subirats, Fort & Sacha, 2020). This contribution addresses this gap in academia. Specifically, it investigates the facilitating conditions that can foster the students’ acceptance and usage of remote learning technologies. It examines the participants’ utilitarian motivations to utilize asynchronous learning resources to access course material, and sheds light on their willingness to engage with instructors and/or peers through synchronous, video conferencing software, to continue pursuing their educational programs from home, during an unexpected pandemic situation.

This study builds on previous theoretical underpinnings on technology adoption (Cheng & Yuen, 2018; Al-Rahmi, Alias, Othman, Marin & Tur, 2018; Merhi, 2015; Schoonenboom, 2014; Lin, Zimmer & Lee, 2013; Chen, Chen & Kazman, 2007; Ngai, Poon & Chan, 2007; Davis, 1989). At the same time, it explores the students’ perceptions about the interactivity (McMillan & Jang-Sun Hwang, 2002) of LMS as well as video conferencing software, and sheds light on their HEI’s facilitating conditions (Hoi, 2020; Dečman, 2015; Venkatesh, Thong & Xu, 2012; Venkatesh, Morris, Davis & Davis, 2003). The rationale of this study is to better understand the research participants’ intentions to use remote technologies, to improve their learning journey. To the best of our knowledge, there are no other contributions that have integrated the same measures that have been used in this research. Therefore, this study differentiates itself from the previous literature, and puts forward a research model that is empirically tested.

The development of remote learning

According to the social constructivist theory, individuals necessitate social interactions (Fridin, 2014; Lambropoulos, Faulkner & Culwin, 2012; Ainsworth, 2006; Tam, 2000). They develop their abilities by interacting with others. Therefore, online learning environments ought to be designed to support and challenge the students’ reflective and critical skills, by including interactive learning and collaborative approaches (Rienties & Toetenel, 2016; Dabbagh & Kitsantas, 2012; Wang, 2009; Wang, Woo, & Zhao, 2009). Social constructivism and discovery-based learning techniques emphasize the importance of having students who are actively involved in their learning process. This is in stark contrast with previous educational viewpoints where the responsibility rested with the instructor to teach, and where the learner played a passive, receptive role (Lambropoulos et al., 2012).

Today’s students are increasingly using online technologies to learn, both in and out of their higher educational institutions (Al-Maroof, Al-Qaysi, & Salloum, 2021). They are using interactive media to acquire formal and informal skills (Dabbagh & Kitsantas, 2012), particularly when they take part in constructivist activities with their peers and course instructors (Fridin, 2014). This argumentation is consistent with the collaborative learning theory (Lambropoulos et al., 2012; Khalifa & Kwok, 1999). Students can use digital technologies to access recorded podcasts (Merhi, 2015; Lin et al., 2013), watch videos (Hung, 2016) and interact together through live streaming technologies in real time (Payne, Keith, Schuetzler & Giboney, 2017). Hence, online education has fostered collaborative learning approaches (Wang, 2009). Computer mediated education enables students to search for solutions, to share online information with their peers, to evaluate each other’s ideas, and to monitor one another’s work (Lambić, 2016; Sung et al., 2015; Soflano, et al., 2015). 

Course participants can use remote technologies, including their personal computers, smart phones and tablets to access their instructors’ asynchronous, online resources including course notes, power point presentations, videos clips, case studies, et cetera (Butler, Camilleri, Creed & Zutshi, 2021; Hung, 2016; Ifenthaler & Schweinbenz, 2013). Moreover, in this day and age, they are utilizing video conferencing technologies to attend virtual meetings, and to engage in one-to-one conversations, or in group discussions and debates with their course instructor and with other students. These virtual programs enable students to engage in synchronous communications with course instructors, to ask questions, and receive feedback, in real time.

A critical review of the relevant literature reported that university students were already using asynchronous technologies, in different contexts, before the outbreak of COVID-19 (Butler et al., 2021; Sánchez-Prieto et al., 2017; Hung, 2016; Liu et al., 2010; Sánchez & Hueros, 2010). Many authors held that online technologies were improving the students’ experiences (Crompton & Burke, 2018; Kurucay & Inan, 2017; Sánchez-Prieto et al., 2016). Before the outbreak of COVID-19, many practitioners blended traditional learning methodologies with digital and mobile applications to improve learning outcomes (Al-Maroof et al., 2021; Boelens et al., 2018; Furió et al., 2015). Course instructors can design and develop online learning environments to support their students with asynchronous resources (Wang et al., 2009). They may allow them to engage in collaborative learning activities through virtual environments (Rienties & Toetenel, 2016; Dabbagh & Kitsantas, 2012). These contemporary approaches are synonymous with the social constructivist theory (Fridin, 2014; Lambropoulos et al., 2012) and with discovery-based learning (Ifenthaler, 2012; Lambropoulos et al., 2012).

Theoretical implications

This contribution investigated the students’ perceived usefulness, perceived interactivity, attitudes toward use, facilitating conditions and behavioral intentions to utilize remote technologies. It posited that higher education students perceived the usefulness of remote learning technologies including LMS and video conferencing programs during COVID-19. The findings clearly indicated that they valued their interactive attributes. These factors have led them to embrace these programs during their learning journey. This study also confirmed that the universities’ facilitating conditions had a significant effect on their perceptions about the interactivity of these online learning resources and on their attitudes towards these technologies, as reported in Figure 1. This finding is consistent with previous research that reported that facilitating conditions is positively related to the students’ intentions to continue using digital and mobile learning resources (Gangwar et al., 2015; Teo, 2009).

This image has an empty alt attribute; its file name is the-use-of-learning-management-systems-and-conferencing-technologies.png
Figure 1

This study has differentiated itself from previous contributions as it integrated facilitating conditions (Hoi, 2020; Dečman, 2015; Venkatesh et al. 2003; 2012) and perceived interactivity (Chattaraman et al., 2019; Chen et al., 2007; McMillan & Jang-Sun Hwang, 2002) with perceived usefulness (of technology) and attitudes (toward the use of technology) to better understand the students’ intentions to utilize remote learning technologies to improve their learning journey (Cheng & Yuen, 2018; Al-Rahmi et al., 2018; Merhi, 2015; Schoonenboom, 2014; Lin et al., 2013; Ngai et al., 2007; Davis, 1989) during an unexpected pandemic situation.

A bibliographic analysis revealed that there are a number of theoretical papers that have been published in the last eighteen months on this hot topic (Cesco et al., 2021; Fitter et al., 2020; Howley, 2020; Rahiem, 2020). Yet, to date, there are just a few rigorous studies, that examined the utilization of synchronous video conferencing technologies, in addition to conventional, asynchronous content, like LMS, in the context of higher education (Aguilera-Hermida, 2020; Gonzalez et al., 2020).

The findings from this research shed light on the utilitarian factors that were influencing the students’ engagement with interactive learning resources. According to the descriptive statistics, the students felt that remote technologies were useful to achieve their learning outcomes. They indicated that they were provided with appropriate facilitating conditions that enabled them to migrate to a fully virtual learning environment from face-to-face or blended learning approaches. During the pandemic’s lockdown or partial lockdown conditions, and even when the preventative measures were eased, many students were still using remote learning technologies to access online educational resources. They also kept using video conferencing technologies to attend to virtual classes, and to engage with their course instructor(s) and with their peers, in real time.

The confirmatory composite analysis reported that there were positive and highly significant effects that predicted the students’ intentions to use remote learning technologies. Evidently, educators have provided them with the necessary resources, knowledge and technical support to avail themselves of remote learning technologies. The respondents indicated that they accessed their course instructors’ online resources and regularly interacted with them through live conferencing facilities. The findings from SEM-PLS confirmed that the perceived usefulness and perceived interactivity with online technologies had a positive effect on their attitudes toward remote learning. This research implies that the students were confident with the utilization of interactive technologies to continue their educational programs. In fact, this research model proved that they were likely to use synchronous and asynchronous learning technologies in the foreseeable future, in a post COVID-19 context.

Implications of study for educators and policy makers

The COVID-19 pandemic and its preventative measures urged HEIs and other educational institutions to embrace video conferencing technologies to continue delivering student-centered education. This research suggests that educators ought to monitor their students’ engagement during their virtual sessions. It revealed that the students’ perceived interactivity as well as their higher education institutions’ facilitating conditions were having an effect on their perceptions about the usefulness of remote learning, on their attitudes as well as on their intentions to use them. These digital technologies were supporting the research participants in their learning journeys, whether they were at home or on campus. The students themselves perceived the usefulness of asynchronous LMS as well as of synchronous communications, including video conferencing software like Zoom or Microsoft Teams, among others.

These virtual technologies were already utilized in various contexts, before the outbreak of COVID-19. However, they turned out to be important learning resources in the realms of education. Course instructors are expected to support their students, by developing attractive digital learning resources (e.g. interactive presentations, online articles and recorded video clips) in appropriate formats that can be accessed with ease, through different media, including mobile technologies (Sablić et al., 2020). In this day and age, they can also use video conferencing technologies to interact with course participants in real time. When engaging with online resources, instructors should consider their students’ facilitating conditions, particularly if they are including high-res images, interactive media, including podcasts, videos, etc., in their LMSs. Their asynchronous content should be as clear and focused as possible, with links to relevant sources, including notes, case studies, quizzes, rubrics and formative assessments, among others.

COVID-19 has taught us that the individuals’ engagement with LMS and video conferencing software necessitate high‐quality wireless networks. There may be situations where students as well as their instructors may require online technical support, whether they are working from home of from university premises. Educational institutions including HEIs ought to regularly evaluate their students’ experiences with remote teaching in order to identify any issues that are affecting their academic performance (Camilleri, 2021b). HEI leaders are not always in a position to evaluate the quality and standards of their instructors’ online learning methods and to determine with absolute certainty whether their students have achieved their learning outcomes. During remote course delivery, students may not always have access to appropriate interactive technologies, learning materials or to adequate productive environments (Bao, 2020). There can be instances where course instructors and students could require facilitating conditions like technical support or training and development to enhance their competences and capabilities with the use of remote technologies.

A prepublication copy of this contribution can be downloaded through: https://www.researchgate.net/publication/353859136_The_Acceptance_of_Learning_Management_Systems_and_Video_Conferencing_Technologies_Lessons_Learned_from_COVID-19

Leave a comment

Filed under Conferencing Technologies, Education, education technology, Learning management systems, Remote Learning

Key Terms in Education Technology Literature

This is an excerpt from one of my latest contributions, entitled: “The Use of Mobile Learning Technologies in Primary Education”.

edtech(The Image has been adapted from Buzzle.com)

 

  • The ‘Constructivist-Based learning’ is a learning theory claiming that individuals construct their knowledge and understandings through experiencing things.
  • The ‘Digital Learning Resources’ include digitally formatted, educational materials like; graphics, images or photos, audio and video, simulations and animation technologies, that are used to support students to achieve their learning outcomes.
  • The ‘Digital Games-Based Learning’ (DGBL) involves the use of educational video games that can be accessed through computer-based applications. DGBL are usually aimed to improve the students’ learning outcomes by balancing educational content and gameplay.
  • The ‘Discovery-Based Learning’ is a constructivist-based approach to education as students seek to learn through continuous inquiry and experience.
  • The ‘Learning Outcomes’ are assessment tools that measure the students’ achievement at the end of a course or program.
  • ‘Mobile Learning’ (M-Learning) is a term that describes how individuals learn through mobile, portable devices, including smart phones, laptops and/or tablets.
  • The ‘Serious Games’ refer to games that are used in industries like; education, health care, engineering, urban planning, politics and defence, among other areas. Such games are usually designed for training purpose other than pure entertainment.
  • The ‘Ubiquitous Technology’ involves the use of wireless sensor networks that disseminate information in real time, from virtually everywhere.

 

ADDITIONAL READING

  1. Bakker, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2015). Effects of playing mathematics computer games on primary school students’ multiplicative reasoning ability. Contemporary Educational Psychology40, 55-71.
  2. Blatchford, P., Baines, E., & Pellegrini, A. (2003). The social context of school playground games: Sex and ethnic differences, and changes over time after entry to junior school. British Journal of Developmental Psychology21(4), 481-505.
  3. Bottino, R. M., Ferlino, L., Ott, M., & Tavella, M. (2007). Developing strategic and reasoning abilities with computer games at primary school level. Computers & Education49(4), 1272-1286.
  4. Camilleri, M.A. & Camilleri, A. (2017). The Students’ Perceptions of Digital Game-Based Learning. In Pivec, M. & Grundler, J. (Ed.)11th European Conference on Games Based Learning (October). Proceedings, pp. 52-62, H JOANNEUM University of Applied Science, Graz, Austria, pp 56-62. http://toc.proceedings.com/36738webtoc.pdf https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3087801
  5. Camilleri, A.C. & Camilleri, M.A. (2019). The Students Intrinsic and Extrinsic Motivations to Engage with Digital Learning Games. In Shun-Wing N.G., Fun, T.S. & Shi, Y. (Eds.) 5th International Conference on Education and Training Technologies (ICETT 2019). Seoul, South Korea (May, 2019). International Economics Development and Research Center (IEDRC). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3339158
  6. Camilleri, A.C. & Camilleri, M.A. (2019). The Students’ Perceived Use, Ease of Use and Enjoyment of Educational Games at Home and at School. 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March 2019). International Academy of Technology, Education and Development (IATED). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3339163
  7. Camilleri, M.A. & Camilleri, A.C. (2019). Student-Centred Learning through Serious Games. 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March 2019). International Academy of Technology, Education and Development (IATED). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3339166
  8. De Aguilera, M., & Mendiz, A. (2003). Video games and education:(Education in the Face of a “Parallel School”). Computers in Entertainment (CIE)1(1), 1-14.
  9. Hainey, T., Connolly, T. M., Boyle, E. A., Wilson, A., & Razak, A. (2016). A systematic literature review of games-based learning empirical evidence in primary education. Computers & Education102, 202-223.
  10. Hromek, R., & Roffey, S. (2009). Promoting Social and Emotional Learning With Games: “It’s Fun and We Learn Things”. Simulation & Gaming40(5), 626-644.
  11. Lim, C. P. (2008). Global citizenship education, school curriculum and games: Learning Mathematics, English and Science as a global citizen. Computers & Education51(3), 1073-1093.
  12. McFarlane, A., Sparrowhawk, A., & Heald, Y. (2002). Report on the educational use of games. TEEM (Teachers evaluating educational multimedia), Teem, Cambridge, UK. pp.1-26. http://consilr.info.uaic.ro/uploads_lt4el/resources/pdfengReport%20on%20the%20educational%20use%20of%20games.pdf
  13. Miller, D. J., & Robertson, D. P. (2010). Using a games console in the primary classroom: Effects of ‘Brain Training’programme on computation and self‐British Journal of Educational Technology41(2), 242-255.
  14. Pellegrini, A. D., Blatchford, P., Kato, K., & Baines, E. (2004). A short‐term longitudinal study of children’s playground games in primary school: Implications for adjustment to school and social adjustment in the USA and the UK. Social Development13(1), 107-123.
  15. Tüzün, H., Yılmaz-Soylu, M., Karakuş, T., İnal, Y., & Kızılkaya, G. (2009). The effects of computer games on primary school students’ achievement and motivation in geography learning. Computers & Education52(1), 68-77.

 

Leave a comment

Filed under digital games, Digital Learning Resources, digital media, education technology, Higher Education, Mobile, mobile learning, online

The Students’ Engagement with Mobile Learning Technologies

These are excerpts from our latest academic article.

How to Cite: Camilleri, M.A. & Camilleri, A.C. (2019). The Students’ Readiness to Engage with Mobile Learning Apps. Interactive Technology and Smart Education. https://www.emerald.com/insight/content/doi/10.1108/ITSE-06-2019-0027/full/html


Hand-held mobile devices such as smart phones and tablets allow individuals, including students, to access and review online (educational) content from virtually anywhere. The mobile applications (apps) can provide instant access to the schools’ learning resources (Camilleri & Camilleri, 2019b; Sánchez & Isaías, 2017; Cheon, Lee, Crooks & Song, 2012). Therefore, they are increasingly being utilized in the context of primary education to improve the student experience. Relevant theoretical underpinnings reported that more primary level students are utilizing mobile learning technologies to engage with their instructors (Rodríguez, Riaza & Gómez, 2017; Sánchez & Isaías, 2018). Notwithstanding, it is much easier for the younger pupils to mobile apps to read eBooks, as hard-copy textbooks need to be carried in their bags. Arguably, the proliferation of portable technologies like tablets are lighter and less bulky than laptop computers. Hence, primary school students can easily use mobile technologies anywhere, beyond the traditional classroom environment (Rodríguez et al., 2017). Currently, there is a wide variety of educational apps that are readily available on a wide array of mobile devices (Chee, Yahaya, Ibrahim &Hasan, 2017; Domingo & Garganté, 2016). Such interactive technologies can improve the delivery of quality education as teachers provide direct feedback to their students, in real time. Some of the mobile apps can even engage primary school students in immersive learning experiences (Camilleri & Camilleri,2019c; Isaias, Reis, Coutinho & Lencastre, 2017).

On the other hand, other academic literature posited that some students may not want to engage in mobile learning. Very often, commentators implied that the mobile technologies have their own limitations (Cheon et al., 2012; Wang, Wu & Wang, 2009). A few practitioners contended that mobile devices had small screens with low resolutions. Alternatively, some argued about their slow connection speeds, or pointed out that they lacked standardization features  (Sánchez & Isaías, 2017; Camilleri & Camilleri,2017).

As a matter of fact, Android, Apple and Microsoft Windows have different operating systems. As a result, learning apps may have to be customized to be compatible with such systems. Moreover, individuals, including primary school students may hold different attitudes towards the use of mobile devices. There may be students who may be motivated to engage with mobile technologies (Sánchez & Isaias, 2018; Ciampa, 2014) as they use these devices to play games, watch videos, or to chat with their friends, online (Wang et al., 2009). In this case, the primary school students may use their mobile devices for hedonic reasons, rather than to engage in mobile learning activities. Such usage of the mobile technologies can possibly result in undesired educational outcomes. Nevertheless, those primary level students who already own or have instant access to a mobile device may easily become habitual users of this technology; as they use it for different purposes. However, there is still limited research in academia that explores these students’ readiness to engage in mobile learning at home, and at school.


Results

The findings in this study are consistent with the argument that digital natives are increasingly immersing themselves in digital technologies (Bourgonjon et al., 2010), including educational games (Camilleri & Camilleri,2019; Ge & Ifenthaler, 2018; Carvalho et al., 2015, Wouters et al., 2013). However, the results have shown that there was no significant relationship between the perceived ease of the gameplay and the children’s enjoyment in them. Furthermore, the stepwise regression analysis revealed that there was no significant relationship between the normative expectations and the children’s engagement with the educational apps; although it was evident (from the descriptive statistics) that the parents were encouraging their children to play the games at home and at school. This research relied on previously tried and tested measures that were drawn from the educational technology literature in order to explore the hypothesized relationships. There is a common tendency in academic literature to treat the validity and reliability of quantitative measures from highly cited empirical papers as given.

Future studies may use different sampling frames, research designs and methodologies to explore this topic. To the best of our knowledge, there is no other empirical study that has validated the technology acceptance model within a primary school setting. Further work is needed to replicate the findings of this research in a similar context.


References (the full bibliography of this paper)

Ajzen, I. (1991), “The theory of planned behavior”, Organization Behaviour and Human Decision Processes, Vol. 50, No. 2, pp. 179-211.

Bourgonjon, J., Valcke, M., Soetaert, R., and Schellens, T. (2010), “Students’ perceptions about the use of educational games in the classroom”, Computers & Education, Vol. 54, No. 4, pp. 1145-1156.

Burguillo, J.C. (2010), “Using game theory and competition-based learning to stimulate student motivation and performance”, Computers & Education, Vol. 55, No. 2, pp. 566-575.

Camilleri, M.A. and Camilleri, A. (2017a), “The Technology Acceptance of Mobile Applications in Education”, In Sánchez, I.A. & Isaias, P. (Eds) 13th International Conference on Mobile Learning (Budapest, 11th April). Proceedings, pp 41-48. International Association for Development of the Information Society.

Camilleri, M.A., and Camilleri, A.C. (2017b), “Digital learning resources and ubiquitous technologies in education”, Technology, Knowledge and Learning, Vol. 22, No. 1, pp. 65-82.

Camilleri, M. A., and  Camilleri, A. (2019a), “Student Centred Learning Through Serious Games”, 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March, 2019). International Academy of Technology, Education and Development (IATED).

Camilleri, A.C., and Camilleri, M.A. (2019b), “Mobile Learning via Educational Apps: An Interpretative Study”. In Shun-Wing N.G., Fun, T.S. & Shi, Y. (Eds.) 5th International Conference on Education and Training Technologies (ICETT 2019). Seoul, South Korea (May, 2019). International Economics Development and Research Center (IEDRC).

Camilleri, A.C., and Camilleri, M.A. (2019c), “The Students Intrinsic and Extrinsic Motivations to Engage with Digital Learning Games”, In Shun-Wing N.G., Fun, T.S. & Shi, Y. (Eds.) 5th International Conference on Education and Training Technologies (ICETT 2019). Seoul, South Korea (May, 2019). International Economics Development and Research Center (IEDRC).

Carvalho, M.B., Bellotti, F., Berta, R., De Gloria, A., Sedano, C.I., Hauge, H.B., Hu, J., and Rauterberg, M. (2015), “An activity theory-based model for serious games analysis and conceptual design”, Computers & Education, Vol. 87, pp.166-181.

Chang, C.T., Hajiyev, J., and Su, C.R. (2017), “Examining the students’ behavioral intention to use e-learning in Azerbaijan? The general extended technology acceptance model for e-learning approach”, Computers & Education, Vol. 111, pp. 128-143.

Chee, K. N., Yahaya, N., Ibrahim, N. H., and Hasan, M. N. (2017). Review of mobile learning trends 2010-2015: A meta-analysis. Journal of Educational Technology & Society20(2), 113-126.

Chen, K. C. and Jang, S. J. (2010), “Motivation in online learning: Testing a model of self-determination theory”, Computers in Human Behavior, Vol. 26, No. 4, pp. 741-752.

Cheon, J., Lee, S., Crooks, S. M. and Song, J. (2012), “An investigation of mobile learning readiness in higher education based on the theory of planned behavior”, Computers & Education, Vol. 59, No. 3, pp. 1054-1064.

Ciampa, K. (2014), “Learning in a mobile age: an investigation of student motivation”, Journal of Computer Assisted Learning, Vol. 30, No. 1, pp. 82-96.

Connolly, T.M., Boyle, E.A., MacArthur, E.  Hainey, T., and Boyle, J.M. (2012), “A systematic literature review of empirical evidence on computer games and serious games”, Computers & Education, Vol. 59, No. 2, pp. 661-686.

Davis, F.D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, MIS Quarterly, Vol. 13, No. 3, pp. 319-340.

Davis, F.D., Bagozzi, R.P., and Warshaw, P.R. (1989), “User acceptance of computer technology: a comparison of two theoretical models”, Management Science, Vol. 35, No. 8, pp. 982-1003.

Dickey, M.D. (2011), “Murder on Grimm Isle: The impact of game narrative design in an educational game‐based learning environment”, British Journal of Education Technology, Vol. 42, No.  3, pp. 456-469.

Domingo, M. G. and Garganté, A. B. (2016). Exploring the use of educational technology in primary education: Teachers’ perception of mobile technology learning impacts and applications’ use in the classroom. Computers in Human Behavior, Vol. 56, pp. 21-28.

Dunne, Á., Lawlor, M. A., and Rowley, J. (2010), “Young people’s use of online social networking sites–a uses and gratifications perspective”, Journal of Research in International Marketing,. Vol. 4, No. 1, pp.  46-58.

Ge, X., and Ifenthaler, D. (2018), “Designing engaging educational games and assessing engagement in game-based learning”, In Gamification in Education: Breakthroughs in Research and Practice, IGI Global, Hershey, USA, pp. 1-19.

Harris, J. Mishra, P., and Koehler, M. (2009), “Teachers’ technological pedagogical content knowledge and learning activity types: Curriculum-based technology integration reframed”, Journal of Research on Technology in Education, Vol. 41, No. 4, pp. 393-416.

Huang, W.H., Huang, W.Y., and Tschopp, J. (2010), “Sustaining iterative game playing processes in DGBL: The relationship between motivational processing and outcome processing”,  Computers & Education, Vol. 55, No. 2, pp. 789-97.

Hwang, G.J., and Wu, P.H.  (2012), “Advancements and trends in digital game‐based learning research: a review of publications in selected journals from 2001 to 2010”, British. Journal of Education Technology, Vol. 43, No. 1, pp. E6-E10.

Isaias, P., Reis, F., Coutinho, C. and Lencastre, J. A. (2017), “Empathic technologies for distance/mobile learning: An empirical research based on the unified theory of acceptance and use of technology (UTAUT)”, Interactive Technology and Smart Education, Vol. 14, No. 2, pp. 159-180.

Lee, M. K., Cheung, C. M., and Chen, Z. (2005), “Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation”, Information & Management,. Vol. 42, No. 8, pp. 1095-1104.

Li, H., Liu, Y., Xu, X., Heikkilä, J., and Van Der Heijden, H. (2015), “Modeling hedonic is continuance through the uses and gratifications theory: An empirical study in online games”, Computers in Human Behavior, Vol. 48, pp. 261-272.

Park, S.Y. (2009), “An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning”, Education. Technology & Society, Vol. 12, No. 3, pp. 150-162.

Park, S. Y., Nam, M. W., and Cha, S. B. (2012), “University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model”, British Journal of Education Technology, Vol. 43, No. 4, pp. 592-605.

Rodríguez, A. I., Riaza, B. G., & Gómez, M. C. S. (2017), “Collaborative learning and mobile devices: An educational experience in Primary Education”, Computers in Human Behavior, Vol. 72, pp. 664-677.

Ryan, R. M., and Deci, E. L. (2000), “Intrinsic and extrinsic motivations: Classic definitions and new directions”, Contemporary Education Psychology, Vol. 25, No. 1, pp. 54-67.

Sánchez, I. A., & Isaías, P. (2017), “Proceedings of the International Association for Development of the Information Society (IADIS)”, International Conference on Mobile Learning (13th, Budapest, Hungary, April 10-12, 2017). International Association for Development of the Information Society.

Sánchez, I. A., & Isaias, P. (2018), “Proceedings of the International Association for Development of the Information Society (IADIS)”, International Conference on Mobile Learning (14th, Lisbon, Portugal, April 14-16, 2018). International Association for Development of the Information Society.

Teo, T., Beng Lee, C., Sing Chai, C., and Wong, S.L. (2009), “Assessing the intention to use technology among pre-service teachers in Singapore and Malaysia: A multigroup invariance analysis of the Technology Acceptance Model (TAM)”, Computers & Education, Vol. 53, No. 3, pp. 1000-1009.

Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003), “User acceptance of information technology: Toward a unified view”, MIS Quarterly, Vol. 27, No. 3, pp. 425-478.

Venkatesh, V., Thong, Y.T.L., and Xu, X. (2012), “Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology”, MIS Quarterly, Vol. 36, No.1, pp. 157-178.

Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009), “Investigating the determinants and age and gender differences in the acceptance of mobile learning”, British Journal of Educational technology, Vol. 40, No. 1, pp. 92-118.

Wouters, P., Van Nimwegen, C., Van Oostendorp, H., and Van Der Spek, E.D. (2013), “A meta-analysis of the cognitive and motivational effects of serious games”,  Journal of Education Psychology,  Vol. 105, No.  2, pp. 249-266.


Related Publications

Camilleri, M.A. & Camilleri, A.C. (2019). The Acceptance and Use of Mobile Learning Applications in Higher Education. In Pfennig, A. & Chen, K.C. (Eds.) 3rd International Conference on Education and eLearning (ICEEL2019), Barcelona, Spain.

Camilleri, A.C. & Camilleri, M.A. (2019). The Students’ Perceived Use, Ease of Use and Enjoyment of Educational Games at Home and at School. 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March, 2019). International Academy of Technology, Education and Development (IATED).Download this paper

Camilleri, M.A. & Camilleri, A. (2017). The Students’ Perceptions of Digital Game-Based Learning. In Pivec, M. & Grundler, J. (Ed.) 11th European Conference on Games Based Learning  (October). Proceedings, pp. 52-62, H JOANNEUM University of Applied Science, Graz, Austria, pp 56-62. http://toc.proceedings.com/36738webtoc.pdf Download this paper

Camilleri, M.A. & Camilleri, A. (2017). Measuring The Educators’ Behavioural Intention, Perceived Use And Ease Of Use Of Mobile Technologies. In Wood, G. (Ed) Re-connecting management research with the disciplines: Shaping the research agenda for the social sciences (University of Warwick, September). Proceedings, pp., British Academy of Management, UK. http://conference.bam.ac.uk/BAM2017/htdocs/conference_papers.php?track_name=%20Knowledge%20and%20Learning Download this paper

Leave a comment

Filed under Education, education technology, internet technologies, internet technologies and society, Marketing, Mobile, mobile learning