Category Archives: mobile learning

Key Terms in Education Technology Literature

This is an excerpt from one of my latest contributions, entitled: “The Use of Mobile Learning Technologies in Primary Education”.

edtech(The Image has been adapted from Buzzle.com)

 

  • The ‘Constructivist-Based learning’ is a learning theory claiming that individuals construct their knowledge and understandings through experiencing things.
  • The ‘Digital Learning Resources’ include digitally formatted, educational materials like; graphics, images or photos, audio and video, simulations and animation technologies, that are used to support students to achieve their learning outcomes.
  • The ‘Digital Games-Based Learning’ (DGBL) involves the use of educational video games that can be accessed through computer-based applications. DGBL are usually aimed to improve the students’ learning outcomes by balancing educational content and gameplay.
  • The ‘Discovery-Based Learning’ is a constructivist-based approach to education as students seek to learn through continuous inquiry and experience.
  • The ‘Learning Outcomes’ are assessment tools that measure the students’ achievement at the end of a course or program.
  • ‘Mobile Learning’ (M-Learning) is a term that describes how individuals learn through mobile, portable devices, including smart phones, laptops and/or tablets.
  • The ‘Serious Games’ refer to games that are used in industries like; education, health care, engineering, urban planning, politics and defence, among other areas. Such games are usually designed for training purpose other than pure entertainment.
  • The ‘Ubiquitous Technology’ involves the use of wireless sensor networks that disseminate information in real time, from virtually everywhere.

 

ADDITIONAL READING

  1. Bakker, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2015). Effects of playing mathematics computer games on primary school students’ multiplicative reasoning ability. Contemporary Educational Psychology40, 55-71.
  2. Blatchford, P., Baines, E., & Pellegrini, A. (2003). The social context of school playground games: Sex and ethnic differences, and changes over time after entry to junior school. British Journal of Developmental Psychology21(4), 481-505.
  3. Bottino, R. M., Ferlino, L., Ott, M., & Tavella, M. (2007). Developing strategic and reasoning abilities with computer games at primary school level. Computers & Education49(4), 1272-1286.
  4. Camilleri, M.A. & Camilleri, A. (2017). The Students’ Perceptions of Digital Game-Based Learning. In Pivec, M. & Grundler, J. (Ed.)11th European Conference on Games Based Learning (October). Proceedings, pp. 52-62, H JOANNEUM University of Applied Science, Graz, Austria, pp 56-62. http://toc.proceedings.com/36738webtoc.pdf https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3087801
  5. Camilleri, A.C. & Camilleri, M.A. (2019). The Students Intrinsic and Extrinsic Motivations to Engage with Digital Learning Games. In Shun-Wing N.G., Fun, T.S. & Shi, Y. (Eds.) 5th International Conference on Education and Training Technologies (ICETT 2019). Seoul, South Korea (May, 2019). International Economics Development and Research Center (IEDRC). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3339158
  6. Camilleri, A.C. & Camilleri, M.A. (2019). The Students’ Perceived Use, Ease of Use and Enjoyment of Educational Games at Home and at School. 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March 2019). International Academy of Technology, Education and Development (IATED). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3339163
  7. Camilleri, M.A. & Camilleri, A.C. (2019). Student-Centred Learning through Serious Games. 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March 2019). International Academy of Technology, Education and Development (IATED). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3339166
  8. De Aguilera, M., & Mendiz, A. (2003). Video games and education:(Education in the Face of a “Parallel School”). Computers in Entertainment (CIE)1(1), 1-14.
  9. Hainey, T., Connolly, T. M., Boyle, E. A., Wilson, A., & Razak, A. (2016). A systematic literature review of games-based learning empirical evidence in primary education. Computers & Education102, 202-223.
  10. Hromek, R., & Roffey, S. (2009). Promoting Social and Emotional Learning With Games: “It’s Fun and We Learn Things”. Simulation & Gaming40(5), 626-644.
  11. Lim, C. P. (2008). Global citizenship education, school curriculum and games: Learning Mathematics, English and Science as a global citizen. Computers & Education51(3), 1073-1093.
  12. McFarlane, A., Sparrowhawk, A., & Heald, Y. (2002). Report on the educational use of games. TEEM (Teachers evaluating educational multimedia), Teem, Cambridge, UK. pp.1-26. http://consilr.info.uaic.ro/uploads_lt4el/resources/pdfengReport%20on%20the%20educational%20use%20of%20games.pdf
  13. Miller, D. J., & Robertson, D. P. (2010). Using a games console in the primary classroom: Effects of ‘Brain Training’programme on computation and self‐British Journal of Educational Technology41(2), 242-255.
  14. Pellegrini, A. D., Blatchford, P., Kato, K., & Baines, E. (2004). A short‐term longitudinal study of children’s playground games in primary school: Implications for adjustment to school and social adjustment in the USA and the UK. Social Development13(1), 107-123.
  15. Tüzün, H., Yılmaz-Soylu, M., Karakuş, T., İnal, Y., & Kızılkaya, G. (2009). The effects of computer games on primary school students’ achievement and motivation in geography learning. Computers & Education52(1), 68-77.

 

Advertisements

Leave a comment

Filed under digital games, Digital Learning Resources, digital media, education technology, Higher Education, Mobile, mobile learning, online

The Students’ Engagement with Mobile Learning Technologies

These are excerpts from our latest academic article.

How to Cite: Camilleri, M.A. & Camilleri, A.C. (2019). The Students’ Readiness to Engage with Mobile Learning Apps. Interactive Technology and Smart Education. https://www.emerald.com/insight/content/doi/10.1108/ITSE-06-2019-0027/full/html


Hand-held mobile devices such as smart phones and tablets allow individuals, including students, to access and review online (educational) content from virtually anywhere. The mobile applications (apps) can provide instant access to the schools’ learning resources (Camilleri & Camilleri, 2019b; Sánchez & Isaías, 2017; Cheon, Lee, Crooks & Song, 2012). Therefore, they are increasingly being utilized in the context of primary education to improve the student experience. Relevant theoretical underpinnings reported that more primary level students are utilizing mobile learning technologies to engage with their instructors (Rodríguez, Riaza & Gómez, 2017; Sánchez & Isaías, 2018). Notwithstanding, it is much easier for the younger pupils to mobile apps to read eBooks, as hard-copy textbooks need to be carried in their bags. Arguably, the proliferation of portable technologies like tablets are lighter and less bulky than laptop computers. Hence, primary school students can easily use mobile technologies anywhere, beyond the traditional classroom environment (Rodríguez et al., 2017). Currently, there is a wide variety of educational apps that are readily available on a wide array of mobile devices (Chee, Yahaya, Ibrahim &Hasan, 2017; Domingo & Garganté, 2016). Such interactive technologies can improve the delivery of quality education as teachers provide direct feedback to their students, in real time. Some of the mobile apps can even engage primary school students in immersive learning experiences (Camilleri & Camilleri,2019c; Isaias, Reis, Coutinho & Lencastre, 2017).

On the other hand, other academic literature posited that some students may not want to engage in mobile learning. Very often, commentators implied that the mobile technologies have their own limitations (Cheon et al., 2012; Wang, Wu & Wang, 2009). A few practitioners contended that mobile devices had small screens with low resolutions. Alternatively, some argued about their slow connection speeds, or pointed out that they lacked standardization features  (Sánchez & Isaías, 2017; Camilleri & Camilleri,2017).

As a matter of fact, Android, Apple and Microsoft Windows have different operating systems. As a result, learning apps may have to be customized to be compatible with such systems. Moreover, individuals, including primary school students may hold different attitudes towards the use of mobile devices. There may be students who may be motivated to engage with mobile technologies (Sánchez & Isaias, 2018; Ciampa, 2014) as they use these devices to play games, watch videos, or to chat with their friends, online (Wang et al., 2009). In this case, the primary school students may use their mobile devices for hedonic reasons, rather than to engage in mobile learning activities. Such usage of the mobile technologies can possibly result in undesired educational outcomes. Nevertheless, those primary level students who already own or have instant access to a mobile device may easily become habitual users of this technology; as they use it for different purposes. However, there is still limited research in academia that explores these students’ readiness to engage in mobile learning at home, and at school.


Results

The findings in this study are consistent with the argument that digital natives are increasingly immersing themselves in digital technologies (Bourgonjon et al., 2010), including educational games (Camilleri & Camilleri,2019; Ge & Ifenthaler, 2018; Carvalho et al., 2015, Wouters et al., 2013). However, the results have shown that there was no significant relationship between the perceived ease of the gameplay and the children’s enjoyment in them. Furthermore, the stepwise regression analysis revealed that there was no significant relationship between the normative expectations and the children’s engagement with the educational apps; although it was evident (from the descriptive statistics) that the parents were encouraging their children to play the games at home and at school. This research relied on previously tried and tested measures that were drawn from the educational technology literature in order to explore the hypothesized relationships. There is a common tendency in academic literature to treat the validity and reliability of quantitative measures from highly cited empirical papers as given.

Future studies may use different sampling frames, research designs and methodologies to explore this topic. To the best of our knowledge, there is no other empirical study that has validated the technology acceptance model within a primary school setting. Further work is needed to replicate the findings of this research in a similar context.


References (the full bibliography of this paper)

Ajzen, I. (1991), “The theory of planned behavior”, Organization Behaviour and Human Decision Processes, Vol. 50, No. 2, pp. 179-211.

Bourgonjon, J., Valcke, M., Soetaert, R., and Schellens, T. (2010), “Students’ perceptions about the use of educational games in the classroom”, Computers & Education, Vol. 54, No. 4, pp. 1145-1156.

Burguillo, J.C. (2010), “Using game theory and competition-based learning to stimulate student motivation and performance”, Computers & Education, Vol. 55, No. 2, pp. 566-575.

Camilleri, M.A. and Camilleri, A. (2017a), “The Technology Acceptance of Mobile Applications in Education”, In Sánchez, I.A. & Isaias, P. (Eds) 13th International Conference on Mobile Learning (Budapest, 11th April). Proceedings, pp 41-48. International Association for Development of the Information Society.

Camilleri, M.A., and Camilleri, A.C. (2017b), “Digital learning resources and ubiquitous technologies in education”, Technology, Knowledge and Learning, Vol. 22, No. 1, pp. 65-82.

Camilleri, M. A., and  Camilleri, A. (2019a), “Student Centred Learning Through Serious Games”, 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March, 2019). International Academy of Technology, Education and Development (IATED).

Camilleri, A.C., and Camilleri, M.A. (2019b), “Mobile Learning via Educational Apps: An Interpretative Study”. In Shun-Wing N.G., Fun, T.S. & Shi, Y. (Eds.) 5th International Conference on Education and Training Technologies (ICETT 2019). Seoul, South Korea (May, 2019). International Economics Development and Research Center (IEDRC).

Camilleri, A.C., and Camilleri, M.A. (2019c), “The Students Intrinsic and Extrinsic Motivations to Engage with Digital Learning Games”, In Shun-Wing N.G., Fun, T.S. & Shi, Y. (Eds.) 5th International Conference on Education and Training Technologies (ICETT 2019). Seoul, South Korea (May, 2019). International Economics Development and Research Center (IEDRC).

Carvalho, M.B., Bellotti, F., Berta, R., De Gloria, A., Sedano, C.I., Hauge, H.B., Hu, J., and Rauterberg, M. (2015), “An activity theory-based model for serious games analysis and conceptual design”, Computers & Education, Vol. 87, pp.166-181.

Chang, C.T., Hajiyev, J., and Su, C.R. (2017), “Examining the students’ behavioral intention to use e-learning in Azerbaijan? The general extended technology acceptance model for e-learning approach”, Computers & Education, Vol. 111, pp. 128-143.

Chee, K. N., Yahaya, N., Ibrahim, N. H., and Hasan, M. N. (2017). Review of mobile learning trends 2010-2015: A meta-analysis. Journal of Educational Technology & Society20(2), 113-126.

Chen, K. C. and Jang, S. J. (2010), “Motivation in online learning: Testing a model of self-determination theory”, Computers in Human Behavior, Vol. 26, No. 4, pp. 741-752.

Cheon, J., Lee, S., Crooks, S. M. and Song, J. (2012), “An investigation of mobile learning readiness in higher education based on the theory of planned behavior”, Computers & Education, Vol. 59, No. 3, pp. 1054-1064.

Ciampa, K. (2014), “Learning in a mobile age: an investigation of student motivation”, Journal of Computer Assisted Learning, Vol. 30, No. 1, pp. 82-96.

Connolly, T.M., Boyle, E.A., MacArthur, E.  Hainey, T., and Boyle, J.M. (2012), “A systematic literature review of empirical evidence on computer games and serious games”, Computers & Education, Vol. 59, No. 2, pp. 661-686.

Davis, F.D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, MIS Quarterly, Vol. 13, No. 3, pp. 319-340.

Davis, F.D., Bagozzi, R.P., and Warshaw, P.R. (1989), “User acceptance of computer technology: a comparison of two theoretical models”, Management Science, Vol. 35, No. 8, pp. 982-1003.

Dickey, M.D. (2011), “Murder on Grimm Isle: The impact of game narrative design in an educational game‐based learning environment”, British Journal of Education Technology, Vol. 42, No.  3, pp. 456-469.

Domingo, M. G. and Garganté, A. B. (2016). Exploring the use of educational technology in primary education: Teachers’ perception of mobile technology learning impacts and applications’ use in the classroom. Computers in Human Behavior, Vol. 56, pp. 21-28.

Dunne, Á., Lawlor, M. A., and Rowley, J. (2010), “Young people’s use of online social networking sites–a uses and gratifications perspective”, Journal of Research in International Marketing,. Vol. 4, No. 1, pp.  46-58.

Ge, X., and Ifenthaler, D. (2018), “Designing engaging educational games and assessing engagement in game-based learning”, In Gamification in Education: Breakthroughs in Research and Practice, IGI Global, Hershey, USA, pp. 1-19.

Harris, J. Mishra, P., and Koehler, M. (2009), “Teachers’ technological pedagogical content knowledge and learning activity types: Curriculum-based technology integration reframed”, Journal of Research on Technology in Education, Vol. 41, No. 4, pp. 393-416.

Huang, W.H., Huang, W.Y., and Tschopp, J. (2010), “Sustaining iterative game playing processes in DGBL: The relationship between motivational processing and outcome processing”,  Computers & Education, Vol. 55, No. 2, pp. 789-97.

Hwang, G.J., and Wu, P.H.  (2012), “Advancements and trends in digital game‐based learning research: a review of publications in selected journals from 2001 to 2010”, British. Journal of Education Technology, Vol. 43, No. 1, pp. E6-E10.

Isaias, P., Reis, F., Coutinho, C. and Lencastre, J. A. (2017), “Empathic technologies for distance/mobile learning: An empirical research based on the unified theory of acceptance and use of technology (UTAUT)”, Interactive Technology and Smart Education, Vol. 14, No. 2, pp. 159-180.

Lee, M. K., Cheung, C. M., and Chen, Z. (2005), “Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation”, Information & Management,. Vol. 42, No. 8, pp. 1095-1104.

Li, H., Liu, Y., Xu, X., Heikkilä, J., and Van Der Heijden, H. (2015), “Modeling hedonic is continuance through the uses and gratifications theory: An empirical study in online games”, Computers in Human Behavior, Vol. 48, pp. 261-272.

Park, S.Y. (2009), “An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning”, Education. Technology & Society, Vol. 12, No. 3, pp. 150-162.

Park, S. Y., Nam, M. W., and Cha, S. B. (2012), “University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model”, British Journal of Education Technology, Vol. 43, No. 4, pp. 592-605.

Rodríguez, A. I., Riaza, B. G., & Gómez, M. C. S. (2017), “Collaborative learning and mobile devices: An educational experience in Primary Education”, Computers in Human Behavior, Vol. 72, pp. 664-677.

Ryan, R. M., and Deci, E. L. (2000), “Intrinsic and extrinsic motivations: Classic definitions and new directions”, Contemporary Education Psychology, Vol. 25, No. 1, pp. 54-67.

Sánchez, I. A., & Isaías, P. (2017), “Proceedings of the International Association for Development of the Information Society (IADIS)”, International Conference on Mobile Learning (13th, Budapest, Hungary, April 10-12, 2017). International Association for Development of the Information Society.

Sánchez, I. A., & Isaias, P. (2018), “Proceedings of the International Association for Development of the Information Society (IADIS)”, International Conference on Mobile Learning (14th, Lisbon, Portugal, April 14-16, 2018). International Association for Development of the Information Society.

Teo, T., Beng Lee, C., Sing Chai, C., and Wong, S.L. (2009), “Assessing the intention to use technology among pre-service teachers in Singapore and Malaysia: A multigroup invariance analysis of the Technology Acceptance Model (TAM)”, Computers & Education, Vol. 53, No. 3, pp. 1000-1009.

Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003), “User acceptance of information technology: Toward a unified view”, MIS Quarterly, Vol. 27, No. 3, pp. 425-478.

Venkatesh, V., Thong, Y.T.L., and Xu, X. (2012), “Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology”, MIS Quarterly, Vol. 36, No.1, pp. 157-178.

Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009), “Investigating the determinants and age and gender differences in the acceptance of mobile learning”, British Journal of Educational technology, Vol. 40, No. 1, pp. 92-118.

Wouters, P., Van Nimwegen, C., Van Oostendorp, H., and Van Der Spek, E.D. (2013), “A meta-analysis of the cognitive and motivational effects of serious games”,  Journal of Education Psychology,  Vol. 105, No.  2, pp. 249-266.


Related Publications

Camilleri, M.A. & Camilleri, A.C. (2019). The Acceptance and Use of Mobile Learning Applications in Higher Education. In Pfennig, A. & Chen, K.C. (Eds.) 3rd International Conference on Education and eLearning (ICEEL2019), Barcelona, Spain.

Camilleri, A.C. & Camilleri, M.A. (2019). The Students’ Perceived Use, Ease of Use and Enjoyment of Educational Games at Home and at School. 13th Annual International Technology, Education and Development Conference. Valencia, Spain (March, 2019). International Academy of Technology, Education and Development (IATED).Download this paper

Camilleri, M.A. & Camilleri, A. (2017). The Students’ Perceptions of Digital Game-Based Learning. In Pivec, M. & Grundler, J. (Ed.) 11th European Conference on Games Based Learning  (October). Proceedings, pp. 52-62, H JOANNEUM University of Applied Science, Graz, Austria, pp 56-62. http://toc.proceedings.com/36738webtoc.pdf Download this paper

Camilleri, M.A. & Camilleri, A. (2017). Measuring The Educators’ Behavioural Intention, Perceived Use And Ease Of Use Of Mobile Technologies. In Wood, G. (Ed) Re-connecting management research with the disciplines: Shaping the research agenda for the social sciences (University of Warwick, September). Proceedings, pp., British Academy of Management, UK. http://conference.bam.ac.uk/BAM2017/htdocs/conference_papers.php?track_name=%20Knowledge%20and%20Learning Download this paper

Leave a comment

Filed under Education, education technology, internet technologies, internet technologies and society, Marketing, Mobile, mobile learning