This is an excerpt from one of my latest articles.
Suggested Citation: Camilleri, M.A. (2023). Metaverse applications in education: A systematic review and a cost-benefit analysis, Interactive Technology and Smart Education, Forthcoming, https://doi.org/10.1108/ITSE-01-2023-0017
A critical review of the literature suggests that there are both pros and cons of using the Metaverse applications in education. Table 3 provides a summary of possible costs and benefits of delivering education through the Metaverse’s virtual environments. The following section features a more detailed discussion on these elements.
Table 1. A cost-benefit analysis on Metaverse education
Costs | Benefits |
Infrastructure, resources and capabilities | Immersive multi-sensory experiences in 3D environments |
The degree of freedom in a virtual world | Equitable and accessible space for all users |
Privacy and security of users’ personal data | Interactions with virtual representations of people and physical objects |
Identity theft and hijacking of user accounts | Interoperability |
Borderless environment raises ethical and regulatory concerns | |
Users’ addictions and mental health issues |
Costs
Infrastructure, resources and capabilities
The use of the Metaverse technology will probably necessitate a thorough investment in hardware to operate in the universities’ virtual spaces. It requires intricate devices, including appropriate high-performance infrastructures to achieve accurate retina display and pixel density for realistic virtual immersions. These systems rely on fast internet connections with good bandwidths as well as computers with adequate processing capabilities, that are equipped with good graphic cards (Bansal et al., 2022; Chang et al., 2022; Girard and Robertson, 2020; Jiawen et al., 2022; Makransky and Mayer 2022). For the time being, VR, MR and AR hardware may be considered as bulky, heavy, expensive and cost-prohibitive, in some contexts.
The degree of freedom in a virtual world
The Metaverse may offer higher degrees of freedom than what is available through the worldwide web and web2.0 technologies (Hackl et al., 2022). Its administrators cannot be in a position to anticipate the behaviors of all persons using their technologies. Therefore, Metaverse users including students as well as their educators, can possibly be exposed to positive as well as to negative influences, as other individuals can disguise themselves, by using anonymous avatars, to roam in the vast virtual environments.
Privacy and security of users’ personal data
The users’ interactions with the Metaverse as well as their personal or sensitive information, can be tracked by platform operators hosting this Internet service, as they continuously record, process and store their virtual activities in real-time. Like its preceding worldwide web and Web 2.0 technologies, the Metaverse can possibly raise the users’ concerns about the security of their data and of their intellectual properties (Chen, 2022; Ryu et al., 2022l; Skalidis et al., 2022). They may be wary about data breaches, scams, et cetera (Njoku et al., 2023; Tan et al., 2022).
Public blockchains and other platforms can already trace the users’ sensitive data, so they are not anonymous to them. Individuals may decide to use one or more avatars to explore the Metaverse’s worlds. They may risk exposing their personal information, particularly when they are porting from one Metaverse to another and/or when they share transactional details via non-fungible token (NFTs) (Hwang, 2023). Some Metaverse systems do not require their users to share personal information when they create their avatar. However, they could capture relevant information from sensors that detect their users’ brain activity, monitor their facial features, eye motion and vocal qualities, along with other ambient data pertaining to the users’ homes or offices.
They may have legitimate reasons to capture such information, in order to protect them against objectionable content and/or unlawful conduct of other users. In many cases, the users’ personal data may be collected for advertising and/or for communication purposes. Currently, different jurisdictions have not regulated their citizens’ behaviors within the Metaverse contexts. Works are still in progress, in this regard.
Identity theft and hijacking of user accounts
There may be malicious persons or groups who may try use certain technologies, to obtain the personal information and digital assets from Metaverse users. Recently, a deepfake artificial intelligence software has developed short audible content, that mimicked and impersonated a human voice. Other bots may easily copy the human beings’ verbal, vocal and visual data including their personality traits. They could duplicate the avatars’ identities, to commit fraudulent activities including unauthorized transactions and purchases, or other crimes with their disguised identities. For example, Roblox users reported that they experienced avatar scams in the past. In many cases, criminals could try to avail themselves of the digital identities of vulnerable users, including children and senior citizens, among others, to access their funds or cryptocurrencies (as they may be linked to the Metaverse profiles). As a result, Metaverse users may become victims of identity theft. In the near future, evolving security protocols and digital ledger technologies like the blockchain will be increasing the transparency and cybersecurity of digital assets (Ryu et al., 2022). However, users still have to remain vigilant about their digital footprint, to continue protecting their personal information.
As the use of the virtual environment is expected to increase in the coming years, particularly with the emergence of the Metaverse, it is imperative that new ways are developed to protect all users including students. Individuals ought to be informed about the risks to their privacy. Various validation procedures including authentication, such as face scans, retina scans, and speech recognition may be integrated in such systems to prevent identity theft and hijacking of Metaverse accounts.
Borderless environment raises ethical and regulatory concerns
For the time being, a number of policy makers as well as academics are raising their questions on the content that can be presented in the Metaverse’s virtual worlds, as well as to how they can control the conduct and behaviors of the Metaverse users. Arguably, it may prove difficult for the regulators of different jurisdictions to enforce their legislation in the Metaverse’s borderless environment (Njoku et al., 2023). For example, European citizens are well acquainted with the European Union’s (EU) General Data Protection Regulation (GDPR, 2016). Other countries have their own legal frameworks and/or principles that are intended to safeguard the rights of data subjects as well as those of content creators. For example, the United States governments has been slower that the EU to introduce its privacy by design policies. Recently, the South Korean Government announced a set of laudable, non-binding ethical guidelines for the provision and consumption of metaverse services. However, currently, there aren’t a set of formal rules that can apply to all Metaverse users.
Users’ addictions and mental health issues
Although many AR and VR technologies have already been tried and tested in the past few years, the Metaverse is still getting started. At the moment, it is difficult to determine what are the effects of the Metaverse on the users’ health and well-being (Chen, 2022). Many commentators anticipate that an unnecessary exposure to Metaverse’s immersive technologies may result in negative side-effects for the psychological and physical health of human beings (Han et al., 2022). They are suggesting that individuals may easily become addicted to a virtual environment, where the limits of reality are their own imagination. They are lured to it “for all the things they can do” and will be willing to stay “for all the things they can be” (these are excerpts from Ready Player One, a movie blockbuster).
Past research confirms that spending excessive time on internet, social media or playing video games can increase the chances of mental health problems like attention deficit disorders (Dullur et al., 2021), as well as anxiety, stress or depression (Lee et al., 2021), among others. Individuals play video games to achieve their goals, to advance to the next level. Their gameplay releases dopamine (Pallavicini and Pepe, 2020). Similarly, their dopamine levels can increase when they are followed through social media, or when they receive likes, comments or other forms of online engagements (Capriotti et al., 2021; Camilleri and Kozak, 2022; Troise and Camilleri, 2021). Individuals can easily develop an addiction to this immersive technology, as they seek stimulating and temporary pleasurable experiences in its virtual spaces. As a result, they may become dependent to it (Burhan and Moradzadeh, 2020).
However, the individuals’ interpersonal communications via social media networks are not as authentic or satisfying as real-life relationships, as they are not interacting in-person with other human beings. In the case of the Metaverse, their engagement experiences may appear to be real. Yet again, in the Metaverse, its users are located in a virtual environment, they not physically present near other individuals. Human beings need to build an honest and trustworthy relationship with one another. The users of the Metaverse can create avatars that could easily conceal their identity within the virtual world.
Benefits
Immersive multi-sensory experiences in 3D environments
The Metaverse could provide a smooth interaction between the real world and the virtual spaces. Its users can engage in activities that are very similar to what they do in reality. However, it could also provide opportunities for them to experience things that could be impossible for them to do in the real world. Sensory technologies enable users to use their five senses of sight, touch, hearing, taste and smell, to immerse themselves in a virtual 3D environment.
Many students are experienced gamers and are lured by their 3D graphics. They learn when they are actively involved (Siyaev and Jo, 2021a). Therefore, the learning applications should be as meaningful, socially interactive and as engaging as possible (Camilleri and Camilleri, 2019). The Metaverse’s VR tools can be entertaining and could provide captivating and enjoyable experiences to their users (Bühler et al., 2022; Hwang, 2023; Suh and Ahn, 2022). In the past years, a number of educators and students have been using 3D learning applications (e.g. like Second Life) to visit virtual spaces that resemble video games (Hadjistassou, 2016).
Arguably, there is scope for educators and content developers to create digital domains like virtual schools, colleges and campuses, where students and teachers can socialize and engage in two-way communications. Students could visit the premises of their educational institutions in online tours, from virtually anywhere. A number of universities are replicating their physical campus with virtual ones (Díaz et al., 2020). The design of the virtual campuses may result in improved student services, shared interactive content that could improve their learning outcomes, and could even reach wider audiences. Previous research confirms that it is more interesting and appealing for students to learn academic topics through the virtual world (Lu et al., 2022).
Equitable and accessible space for all users
Like other virtual technologies, the Metaverse could be accessed from remote locations. Educational institutions can use its infrastructure to deliver courses (free of charge or against tuition fees, as of now). Metaverse education may enable students from different locations to use its open-source software to pursue courses from anywhere, anytime. Hence, its democratized architecture could reduce geographic disparities among students, and increases their chances of continuing education through higher educational institutions in different parts of the world.
In the future, students including individuals with different abilities, may use the Metaverse’s multisensory environment to immerse themselves in engaging lectures (Hutson, 2022; Lee et al., 2022a).
Interactions with virtual representations of people and physical objects
Currently, individual users can utilize the AR and VR applications to communicate with others and to exert their influence on the objects within the virtual world. They can organize virtual meetings with geographically distant users, attend conferences, et cetera (Camilleri and Camilleri, 2022b; Yu, 2022). Various commentators indicate that the Metaverse can be used to learn academic subjects in real-time sessions in a VR setting (Saritas and Topraklikoglu, 2022; Singh et al., 2022). It could be utilized to interact with peers and course instructors. The students and their lecturers will probably use an avatar that will represent their identity in the virtual world. Many researchers noted that avatars facilitate interactive communications and are a good way to personalize the students’ learning experiences (Barry et al., 2015; Díaz, 2020; Garrido-Iñigo and Rodríguez-Moreno, 2015; Melendez Araya and Hidalgo Avila, 2018; Park, and Kim, 2022).
Interoperability
Many commentators speculate that unlike other VR applications, the Metaverse could probably enable its users to retain their identities as well as the ownership of their digital assets through different virtual worlds and platforms (Hwang, 2023; Xu et al., 2022). This implies that Metaverse users can communicate and interact with other individuals in a seamless manner through different devices or servers, across different platforms. They may be in a position to use the Metaverse to share data and content in different virtual worlds via Web 3.0 (Seddon et al., 2023).
Conclusion
This research theorizes about the pros and cons of using Metaverse’s immersive applications for educational purposes. It clearly indicates that many academics are already experimenting with VR’s immersive technology. While some of them anticipate that the Metaverse is poised to transform education as they envisage that it could be integrated with school curricula and in their educational programs. Others are more skeptical about the hype around this captivating technology. Time will tell whether the Metaverse project comes to fruition.
For the time being, education stakeholders are invited to untap the potential of AR and VR technologies to continue improving the students’ learning journeys. Of course, further research is required to better understand how policy makers as well as practitioners including the developers of the Metaverse, can address the number of challenges and issues identified in this contribution.
The full article and the list of references are available through Researchgate, Academia and SSRN.
You must be logged in to post a comment.